
水泥窑炉协同处置生活垃圾CFD模拟与参数优化

CFD模拟及在水泥窑炉中的应用

数值模拟计算步骤

- □ 计算流体动力学(CFD)是理论分析、实验测量 外又一项重要的研究手段
- □基本思路: 把连续的物理量的场用一系列离散点来代替,建立场变量代数方程组,求解代数方程组获得场变量的近似值
- □应用:广泛用于模拟各种流体流动、传热、燃烧和组分运输等问题

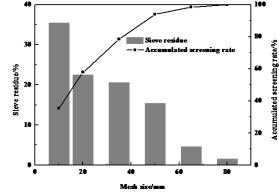
1、水泥窑协同处置生活垃圾CFD模拟前期准备工作

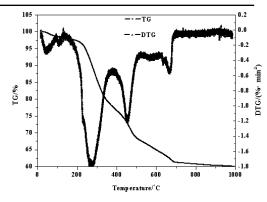
□现场调研与热工检测

位置	温度/℃	气体成分		
		O ₂ /%	NO/pp m	
分解炉 SNCR-1	922-881	2.85	173	
分解炉 SNCR-2	877-892	2.35	393	
分解炉 SNCR-3	895-919	2.82	226	
C5A	880-920	2.47	110	
C5B	881-910	2.77	238	
烟室东	1131	0.63	361	
烟室西	1240	2.86	690	

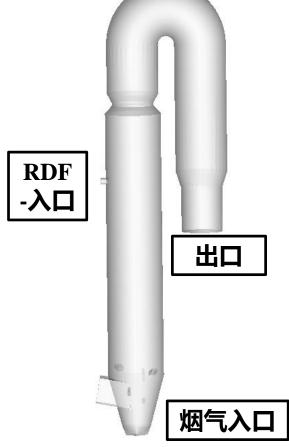
□生活垃圾测试

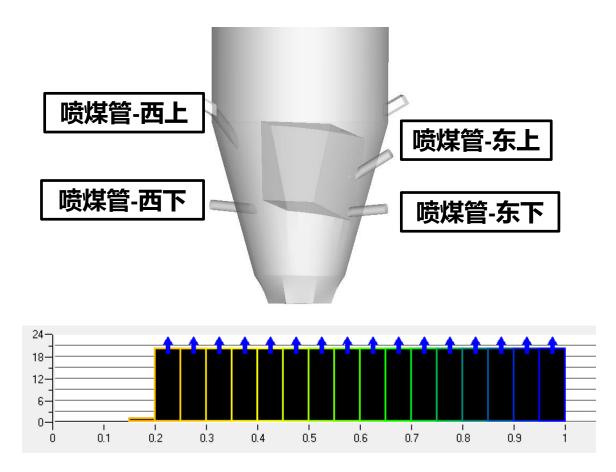
入炉生活垃圾形态

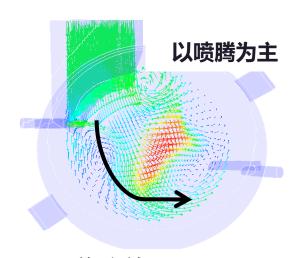

制备好的生活垃圾样品

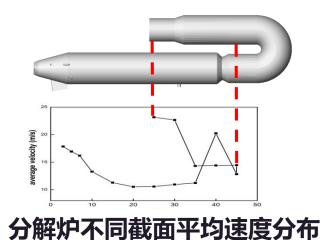

表1 煤粉、生活垃圾工业分析

燃料	Mad /%	Aad /%	Vad /%	FCad /%	Qnet,ad /(kJ·kg ⁻¹)
煤粉	2.74	18.10	25.88	53.28	25118
RDF	0.90	56.60	35.44	7.06	9350


表2 煤粉、生活垃圾元素分析


燃料	C,ad/%	H,ad/%	O,ad/%	N,ad/%	S,ad/%
煤粉	65.66	4.12	7.71	0.90	0.76
RDF	13.90	3.18	24.36	0.58	0.48


□ CFD模拟平台 **RDF** -入口

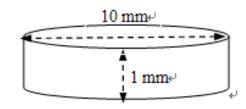


网格总数量107.99万个,平均质量系数0.913

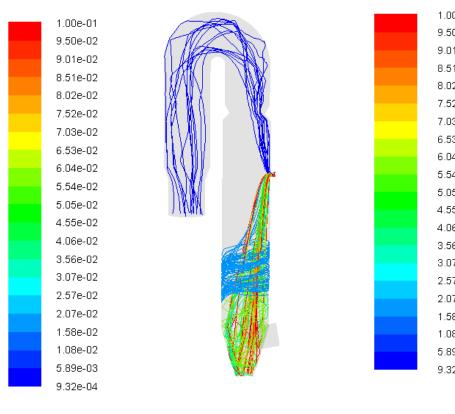
水泥窑协同处置生活垃圾CFD模拟平台

旋流效果不强 **三次风截面位置速度矢量图**

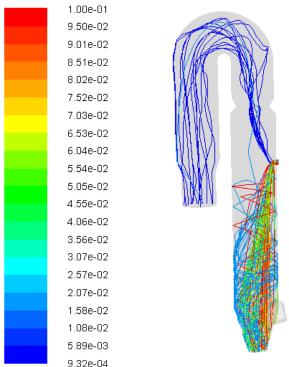
□ 分解炉流动、燃烧与污染物形成的CFD模拟


参数	模拟结果	实测结果
分解炉出口温度/℃	922	890-920
分解炉出口O ₂ 浓度/%	2.72	2.67
分解炉出口CO浓度 /ppm	350	416
入窑分解率/%	95.51	~95
煤粉燃尽率/%	95.52	1

开展了生活垃圾<mark>喂入量、水分含量、粒径、喂入位置等</mark>对分解炉内流场、 温度场及生活垃圾自身燃尽率的CFD模拟研究。


□ 生活垃圾喂入量-0、7 t/h、15 t/h

基于能量与用风平衡计算煤粉、三次风量随RDF处置量的变化。

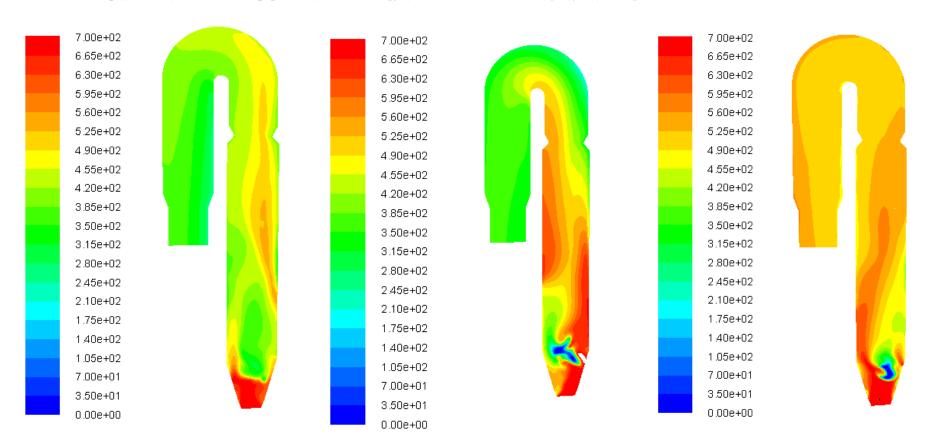

RDF 处置 量t/h	煤粉用量t/h	三次风速度 m/s
0	19.50	21.42
7	17.98	20.84
15	15.89	19.76

对于平均粒度为10 mm的 RDF,设定其直径为10 mm,高度为1 mm,则形 状系数为0.47


□7t/h时: 60%的RDF 从分解炉锥 部落入烟室;

□15t/h时: 67.5%的 RDF从分解 炉锥部落入 烟室。

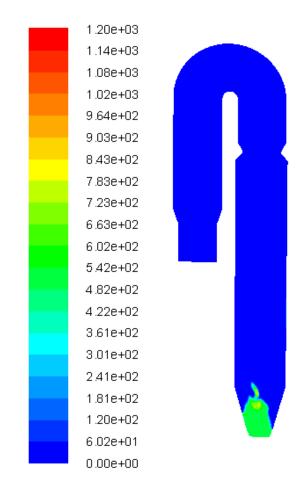
(b) RDF**处置**量15t/h


RDF处置量	种类	理论燃烧量	实际燃烧量	燃尽率
t/h	竹矢	kg/s	kg/s	%
7	挥发分	0.5215	0.4513	86.54
7	固定碳	0.1038	0.0462	44.49
15	挥发分	1.1175	0.7648	68.44
	固定碳	0.2225	0.0786	35.31

当RDF喂入量由7t/h 增加到15t/h时,其整 体燃尽率由79.56%, 降低到62.94%

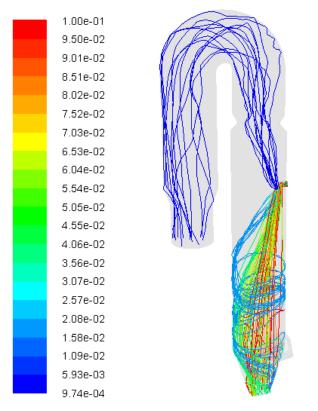

RDF固定碳燃烧主要发生在分解炉柱体及锥部区域;引起此处氧气浓度降低,而CO含量增加

水泥窑协同处置生活垃圾CFD模拟优化-NO浓度分布



RDF=15, 出口NO=527

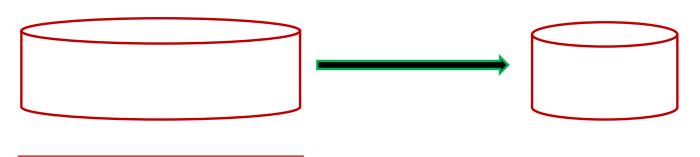
水泥窑协同处置生活垃圾CFD模拟优化-SO2浓度分布



没有考虑与CaO的反应, 352 ppm

考虑与CaO的反应,0ppm

□ 生活垃圾水分含量-10%、25%

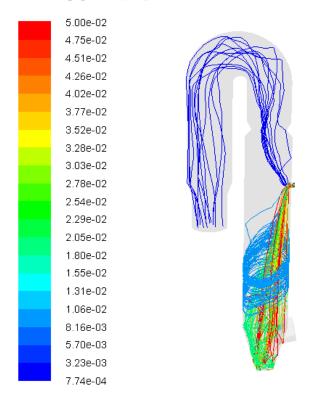

RDF水分含量为10%时其 运动轨迹

RDF水 分	种类	理论燃烧量	实际燃 烧量	燃 尽率 %
%		kg/s	kg/s	70
10	挥发分	1.1175	0.8281	74.10
	固定碳	0.2225	0.0916	41.16
25	挥发分	1.1175	0.7648	68.44
	固定碳	0.2225	0.0786	35.31

RDF水分由25%降低至10%时有助于提高 RDF在分解炉内的燃尽率; RDF整体燃尽 率由62.94%提高至68.63%

□ 生活垃圾粒径-10mm、5mm

保持生活垃圾喂入量为15t/h,将生活垃圾平均粒径由10mm降低到5mm,示意图如下。

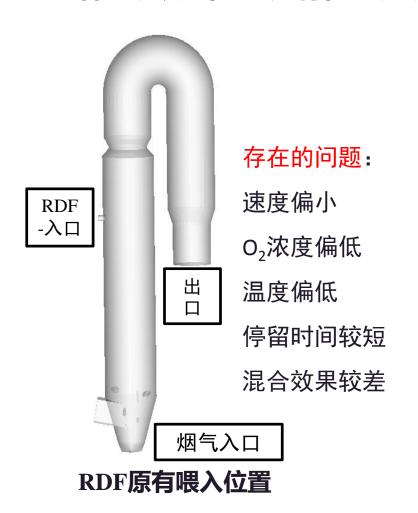

平均粒径10 mm 高径比 1:10 最大粒径 0.1 m 球形系数 0.47

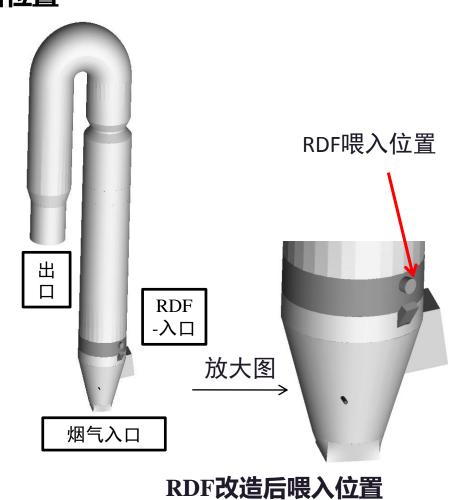
平均粒径5 mm 高径比 1:5 最大粒径 0.05 m 球形系数 0.64

原有粒径

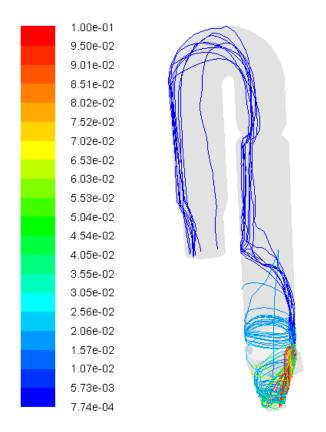
减小后粒径

□生活垃圾粒径




RDF粒径改变后其运动轨迹
从分解炉锥部落入烟室的RDF比修降低为55%。

RDF平 均粒径 mm	种类	理论燃 烧量 kg/s	实际燃 烧量 kg/s	燃 尽率 %
10	挥发分	1.1175	0.7648	68.44
10	固定碳	0.2225	0.0786	35.31
5	挥发分	1.1175	1.0065	90.07
	固定碳	0.2225	0.1436	64.54


RDF平均粒径由10 mm降低至5 mm后显著 提升了RDF在分解炉内的燃尽率; RDF整体 燃尽率由62.94%提高至85.83%,提高了 23%以上

□ 生活垃圾喂入位置-原有位置、改后位置

□ 生活垃圾喂入位置-原有位置、改后位置

RDF喂入位置改变后其运动轨迹

RDF喂	种类	理论燃烧量	实际燃 烧量	燃尽率
入位置	TTX	kg/s	kg/s	%
	挥发分	1.1175	0.7648	68.44
原有	固定碳	0.2225	0.0786	35.31
改后	挥发分	1.1175	0.7288	65.22
	固定碳	0.2225	0.1356	60.94

RDF喂入位置改变后,显著改变了RDF在分解炉内的运动轨迹;

改变位置后明显提升了RDF固定碳的燃尽率,但是挥发分燃尽率降低,整体燃尽率仅从62.94%提高到64.51%。